mlsauce’s `v0.12.0`: prediction intervals for LSBoostRegressor

This article was first published on T. Moudiki's Webpage - Python , and kindly contributed to python-bloggers. (You can report issue about the content on this page here)
Want to share your content on python-bloggers? click here.

Many of you (> 2600 reads so far) are reading this document on LSBoost, a gradient boosting algorithm for penalized nonlinear least squares. This never ceases to amaze me, because this document is quite… empty 🙂

mlsauce’s v0.12.0 includes prediction intervals for the LSBoostRegressor in particular. These prediction intervals are obtained through the use of split conformal prediction (SCP, so far) with, also, the possibility of using SCP-bootstrap or SCP-kernel density estimation for simulation.

!pip install git+https://github.com/Techtonique/mlsauce.git --verbose # this is the preferred way
import subprocess
import sys
import matplotlib.pyplot as plt
import warnings

import mlsauce as ms
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_california_housing, load_diabetes
from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from time import time
from os import chdir
from sklearn import metrics

# ridge

print("\n")
print("ridge -----")
print("\n")


dataset = fetch_california_housing()
X = dataset.data
y = dataset.target
# split data into training test and test set
np.random.seed(15029)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.2)

obj = ms.LSBoostRegressor(col_sample=0.9, row_sample=0.9)
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True, method="splitconformal")
print(time()-start)
print(f"splitconformal coverage 1: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(col_sample=0.9, row_sample=0.9,
                          replications=50,
                          type_pi="bootstrap")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal bootstrap coverage 1: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(col_sample=0.9, row_sample=0.9,
                          replications=50,
                          type_pi="kde")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal kde coverage 1: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


dataset = load_diabetes()
X = dataset.data
y = dataset.target
# split data into training test and test set
np.random.seed(15029)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.2)

obj = ms.LSBoostRegressor(col_sample=0.9, row_sample=0.9)
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True, method="splitconformal")
print(time()-start)
print(f"splitconformal coverage 2: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(col_sample=0.9, row_sample=0.9,
                          replications=50,
                          type_pi="bootstrap")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal bootstrap coverage 2: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(col_sample=0.9, row_sample=0.9,
                          replications=50,
                          type_pi="kde")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal kde coverage 2: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")



# lasso

print("\n")
print("lasso -----")
print("\n")


dataset = fetch_california_housing()
X = dataset.data
y = dataset.target
# split data into training test and test set
np.random.seed(15029)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.2)

obj = ms.LSBoostRegressor(n_estimators=50, solver="lasso", col_sample=0.9, row_sample=0.9)
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True, method="splitconformal")
print(time()-start)
print(f"splitconformal coverage 3: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(n_estimators=50, solver="lasso", col_sample=0.9, row_sample=0.9,
                          replications=50,
                          type_pi="bootstrap")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal bootstrap coverage 3: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(n_estimators=50, solver="lasso", col_sample=0.9, row_sample=0.9,
                          replications=50,
                          type_pi="kde")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal kde coverage 3: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


dataset = load_diabetes()
X = dataset.data
y = dataset.target
# split data into training test and test set
np.random.seed(15029)
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.2)

obj = ms.LSBoostRegressor(n_estimators=50, solver="lasso", reg_lambda=0.002,
                          col_sample=0.9, row_sample=0.9)
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True, method="splitconformal")
print(time()-start)
print(f"splitconformal coverage 4: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(n_estimators=10, solver="lasso", col_sample=0.9, row_sample=0.9,
                          replications=50, reg_lambda=0.003, dropout=0.4,
                          type_pi="bootstrap")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal bootstrap coverage 4: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


obj = ms.LSBoostRegressor(n_estimators=10, solver="lasso", col_sample=0.9, row_sample=0.9,
                          replications=50, reg_lambda=0.001, dropout=0.4,
                          type_pi="kde")
print(obj.get_params())
start = time()
obj.fit(X_train, y_train)
print(time()-start)
start = time()
preds = obj.predict(X_test, return_pi=True,
                    method="splitconformal")
print(time()-start)
print(f"splitconformal kde coverage 4: {np.mean((preds.upper >= y_test)*(preds.lower <= y_test))}")


ridge -----


{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 100, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': None, 'row_sample': 0.9, 'seed': 123, 'solver': 'ridge', 'tolerance': 0.0001, 'type_pi': None, 'verbose': 1}


100%|██████████| 100/100 [00:04<00:00, 23.89it/s]


4.20000147819519


100%|██████████| 100/100 [00:03<00:00, 27.94it/s]


4.357612133026123
splitconformal coverage 1: 0.9505813953488372
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 100, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'ridge', 'tolerance': 0.0001, 'type_pi': 'bootstrap', 'verbose': 1}


100%|██████████| 100/100 [00:04<00:00, 22.02it/s]


4.560582876205444


100%|██████████| 100/100 [00:02<00:00, 44.89it/s]
100%|██████████| 50/50 [00:00<00:00, 28606.63it/s]


2.8877038955688477
splitconformal bootstrap coverage 1: 0.9590600775193798
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 100, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'ridge', 'tolerance': 0.0001, 'type_pi': 'kde', 'verbose': 1}


100%|██████████| 100/100 [00:04<00:00, 20.70it/s]


4.869342803955078


100%|██████████| 100/100 [00:02<00:00, 34.91it/s]
100%|██████████| 50/50 [00:00<00:00, 212.32it/s]


3.8961992263793945
splitconformal kde coverage 1: 0.9626937984496124
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 100, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': None, 'row_sample': 0.9, 'seed': 123, 'solver': 'ridge', 'tolerance': 0.0001, 'type_pi': None, 'verbose': 1}


100%|██████████| 100/100 [00:00<00:00, 260.57it/s]


0.41154003143310547


100%|██████████| 100/100 [00:00<00:00, 366.96it/s]


0.32917046546936035
splitconformal coverage 2: 0.9550561797752809
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 100, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'ridge', 'tolerance': 0.0001, 'type_pi': 'bootstrap', 'verbose': 1}


100%|██████████| 100/100 [00:00<00:00, 299.65it/s]


0.35674047470092773


100%|██████████| 100/100 [00:00<00:00, 252.19it/s]
100%|██████████| 50/50 [00:00<00:00, 89507.13it/s]


0.4990723133087158
splitconformal bootstrap coverage 2: 0.9662921348314607
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 100, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'ridge', 'tolerance': 0.0001, 'type_pi': 'kde', 'verbose': 1}


100%|██████████| 100/100 [00:00<00:00, 199.36it/s]


0.5178115367889404


100%|██████████| 100/100 [00:00<00:00, 218.56it/s]
100%|██████████| 50/50 [00:00<00:00, 238.12it/s]


0.7703864574432373
splitconformal kde coverage 2: 0.9662921348314607


lasso -----


{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 50, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': None, 'row_sample': 0.9, 'seed': 123, 'solver': 'lasso', 'tolerance': 0.0001, 'type_pi': None, 'verbose': 1}


100%|██████████| 50/50 [00:01<00:00, 39.21it/s]


1.3068976402282715


100%|██████████| 50/50 [00:00<00:00, 95.31it/s]


0.6802136898040771
splitconformal coverage 3: 0.9510658914728682
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 50, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'lasso', 'tolerance': 0.0001, 'type_pi': 'bootstrap', 'verbose': 1}


100%|██████████| 50/50 [00:00<00:00, 54.06it/s]


0.9406630992889404


100%|██████████| 50/50 [00:00<00:00, 102.88it/s]
100%|██████████| 50/50 [00:00<00:00, 18774.86it/s]


0.6879117488861084
splitconformal bootstrap coverage 3: 0.9605135658914729
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 50, 'n_hidden_features': 5, 'reg_lambda': 0.1, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'lasso', 'tolerance': 0.0001, 'type_pi': 'kde', 'verbose': 1}


100%|██████████| 50/50 [00:01<00:00, 31.35it/s]


1.624236822128296


100%|██████████| 50/50 [00:00<00:00, 54.72it/s]
100%|██████████| 50/50 [00:00<00:00, 315.17it/s]


1.4067130088806152
splitconformal kde coverage 3: 0.9631782945736435
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 50, 'n_hidden_features': 5, 'reg_lambda': 0.002, 'replications': None, 'row_sample': 0.9, 'seed': 123, 'solver': 'lasso', 'tolerance': 0.0001, 'type_pi': None, 'verbose': 1}


100%|██████████| 50/50 [00:00<00:00, 131.96it/s]


0.3877689838409424


100%|██████████| 50/50 [00:00<00:00, 197.36it/s]


0.27906036376953125
splitconformal coverage 4: 0.9550561797752809
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0.4, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 10, 'n_hidden_features': 5, 'reg_lambda': 0.003, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'lasso', 'tolerance': 0.0001, 'type_pi': 'bootstrap', 'verbose': 1}


100%|██████████| 10/10 [00:00<00:00, 193.79it/s]


0.06406068801879883


100%|██████████| 10/10 [00:00<00:00, 172.80it/s]
100%|██████████| 50/50 [00:00<00:00, 81190.55it/s]


0.10322904586791992
splitconformal bootstrap coverage 4: 0.9662921348314607
{'activation': 'relu', 'backend': 'cpu', 'col_sample': 0.9, 'direct_link': 1, 'dropout': 0.4, 'kernel': None, 'learning_rate': 0.1, 'n_estimators': 10, 'n_hidden_features': 5, 'reg_lambda': 0.001, 'replications': 50, 'row_sample': 0.9, 'seed': 123, 'solver': 'lasso', 'tolerance': 0.0001, 'type_pi': 'kde', 'verbose': 1}


100%|██████████| 10/10 [00:00<00:00, 306.63it/s]


0.05145859718322754


100%|██████████| 10/10 [00:00<00:00, 228.20it/s]
100%|██████████| 50/50 [00:00<00:00, 1266.03it/s]

0.128190279006958
splitconformal kde coverage 4: 0.9550561797752809
warnings.filterwarnings('ignore')

split_color = 'green'
split_color2 = 'orange'
local_color = 'gray'

def plot_func(x,
              y,
              y_u=None,
              y_l=None,
              pred=None,
              shade_color="",
              method_name="",
              title=""):

    fig = plt.figure()

    plt.plot(x, y, 'k.', alpha=.3, markersize=10,
             fillstyle='full', label=u'Test set observations')

    if (y_u is not None) and (y_l is not None):
        plt.fill(np.concatenate([x, x[::-1]]),
                 np.concatenate([y_u, y_l[::-1]]),
                 alpha=.3, fc=shade_color, ec='None',
                 label = method_name + ' Prediction interval')

    if pred is not None:
        plt.plot(x, pred, 'k--', lw=2, alpha=0.9,
                 label=u'Predicted value')

    #plt.ylim([-2.5, 7])
    plt.xlabel('$X$')
    plt.ylabel('$Y$')
    plt.legend(loc='upper right')
    plt.title(title)

    plt.show()
max_idx = 50
plot_func(x = range(max_idx),
          y = y_test[0:max_idx],
          y_u = preds.upper[0:max_idx],
          y_l = preds.lower[0:max_idx],
          pred = preds.mean[0:max_idx],
          shade_color=split_color2,
          title = f"LSBoostRegressor ({max_idx} first points in test set)")

xxx

To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - Python .

Want to share your content on python-bloggers? click here.