Python-bloggers

Automated hyperparameter tuning using any conformalized surrogate

This article was first published on T. Moudiki's Webpage - Python , and kindly contributed to python-bloggers. (You can report issue about the content on this page here)
Want to share your content on python-bloggers? click here.

Bayesian optimization(BO) is widely used for Machine Learning hyperparameter tuning. BO relies mainly on a probabilistic model of the objective function (generally a Gaussian process model that approximates the objective function) called the surrogate and improved sequentially, and an acquisition function that allows to select the next point to evaluate in the sequential optimization procedure.

In this post, I will show how to use conformalized surrogates to tune hyperparameters of machine learning models. In this context, instead of using the posterior closed-form distribution of a Gaussian Process, any conformalized surrogate can be used for a probabilistic approximation of the objective function. And since there’s no closed-form expression of the acquisition function (here the Expected Improvement over the current optimum), a monte-carlo approximation of the (expectation) acquisition function is used, based on simulations of the conformalized surrogate. The simulation approach is similar to the one used in this post, except, the sequential ordering doesn’t matter here.

0 – Install and load packages

!pip install nnetsauce
!pip install git+https://github.com/Techtonique/GPopt.git --upgrade --no-cache-dir
import GPopt as gp
import nnetsauce as ns
import numpy as np

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import ElasticNetCV
from sklearn.model_selection import cross_val_score, train_test_split
from sklearn import metrics
from time import time

1 – Cross-validation and hyperparameter tuning

def ridge2_cv(X_train, y_train,
              lambda1 = 0.1,
              lambda2 = 0.1,
              n_hidden_features=5,
              n_clusters=5,
              dropout = 0.8,
              solver="L-BFGS-B"):

  estimator  = ns.Ridge2Classifier(lambda1 = lambda1,
                                   lambda2 = lambda2,
                                   n_hidden_features=n_hidden_features,
                                   n_clusters=n_clusters,
                                   dropout = dropout,
                                   solver=solver)

  return -cross_val_score(estimator, X_train, y_train,
                          scoring='accuracy',
                          cv=5, n_jobs=None,
                          verbose=0).mean()

def optimize_ridge2(X_train, y_train, solver="L-BFGS-B",
                    surrogate="rf"):
  # objective function for hyperparams tuning
  def crossval_objective(x):
    return ridge2_cv(X_train=X_train,
                  y_train=y_train,
                  lambda1 = 10**x[0],
                  lambda2 = 10**x[1],
                  n_hidden_features=int(x[2]),
                  n_clusters=int(x[3]),
                  dropout = x[4],
                  solver = solver)
  if surrogate == "rf":
    gp_opt = gp.GPOpt(objective_func=crossval_objective,
                      lower_bound = np.array([ -10, -10,   3, 2, 0.6]),
                      upper_bound = np.array([  10,  10, 100, 5,   1]),
                      surrogate_obj = ns.CustomRegressor(obj=RandomForestRegressor(), # it's a conformalized quasi-randomized network
                                                        replications=250, # number of simulations for evaluating the expected improvement
                                                        type_pi="kde"), # Kernel Density Estimation is used for simulation
                      acquisition="ei", # expected improvement by simulation
                      params_names=["lambda1", "lambda2", "n_hidden_features", "n_clusters", "dropout"],
                      n_init=10, n_iter=90, seed=3137)
  elif surrogate == "enet":
    gp_opt = gp.GPOpt(objective_func=crossval_objective,
                      lower_bound = np.array([ -10, -10,   3, 2, 0.6]),
                      upper_bound = np.array([  10,  10, 100, 5,   1]),
                      surrogate_obj = ns.CustomRegressor(obj=ElasticNetCV(), # the model is nonlinear, it's a conformalized quasi-randomized network
                                                        replications=250, # number of simulations for evaluating the expected improvement
                                                        type_pi="kde"), # Kernel Density Estimation is used for simulation
                      acquisition="ei", # expected improvement by simulation
                      params_names=["lambda1", "lambda2", "n_hidden_features", "n_clusters", "dropout"],
                      n_init=10, n_iter=90, seed=3137)

  return gp_opt.optimize(method = "mc", verbose=2, abs_tol=1e-3) # monte carlo computation of expected improvement


dataset = load_breast_cancer()
X = dataset.data
y = dataset.target

# split data into training test and test set
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.2, random_state=3137)

# hyperparams tuning, surrogate = conformalized Random Forest
res_opt1 = optimize_ridge2(X_train, y_train, solver="L-BFGS-B", surrogate = "rf")
print(res_opt1)

# hyperparams tuning with different starting values for the optimization algorithm, surrogate = conformalized Random Forest
res_opt2 = optimize_ridge2(X_train, y_train, solver="L-BFGS-B-lstsq", surrogate = "rf")
print(res_opt2)

# hyperparams tuning, surrogate = conformalized ElasticNet
res_opt3 = optimize_ridge2(X_train, y_train, solver="L-BFGS-B", surrogate = "enet")
print(res_opt3)

# hyperparams tuning with different starting values for the optimization algorithm, surrogate = conformalized ElasticNet
res_opt4 = optimize_ridge2(X_train, y_train, solver="L-BFGS-B-lstsq", surrogate = "enet")
print(res_opt4)
res_opt1.best_params["lambda1"] = 10**(res_opt1.best_params["lambda1"])
res_opt1.best_params["lambda2"] = 10**(res_opt1.best_params["lambda2"])
res_opt1.best_params["n_hidden_features"] = int(res_opt1.best_params["n_hidden_features"])
res_opt1.best_params["n_clusters"] = int(res_opt1.best_params["n_clusters"])
print(res_opt1.best_params)

res_opt2.best_params["lambda1"] = 10**(res_opt2.best_params["lambda1"])
res_opt2.best_params["lambda2"] = 10**(res_opt2.best_params["lambda2"])
res_opt2.best_params["n_hidden_features"] = int(res_opt2.best_params["n_hidden_features"])
res_opt2.best_params["n_clusters"] = int(res_opt2.best_params["n_clusters"])
print(res_opt2.best_params)

res_opt3.best_params["lambda1"] = 10**(res_opt3.best_params["lambda1"])
res_opt3.best_params["lambda2"] = 10**(res_opt3.best_params["lambda2"])
res_opt3.best_params["n_hidden_features"] = int(res_opt3.best_params["n_hidden_features"])
res_opt3.best_params["n_clusters"] = int(res_opt3.best_params["n_clusters"])
print(res_opt3.best_params)

res_opt4.best_params["lambda1"] = 10**(res_opt4.best_params["lambda1"])
res_opt4.best_params["lambda2"] = 10**(res_opt4.best_params["lambda2"])
res_opt4.best_params["n_hidden_features"] = int(res_opt4.best_params["n_hidden_features"])
res_opt4.best_params["n_clusters"] = int(res_opt4.best_params["n_clusters"])
print(res_opt4.best_params)
{'lambda1': 0.2143160456513889, 'lambda2': 99.32768474363539, 'n_hidden_features': 3, 'n_clusters': 4, 'dropout': 0.80830078125}
{'lambda1': 1.19372502075462e-10, 'lambda2': 0.0003873778332245682, 'n_hidden_features': 5, 'n_clusters': 3, 'dropout': 0.8306396484375}
{'lambda1': 0.03853145684685379, 'lambda2': 0.0020254361391973223, 'n_hidden_features': 91, 'n_clusters': 4, 'dropout': 0.75242919921875}
{'lambda1': 1.19372502075462e-10, 'lambda2': 0.0003873778332245682, 'n_hidden_features': 5, 'n_clusters': 3, 'dropout': 0.8306396484375}

2 – Out-of-sample scores

from time import time


clf1 = ns.Ridge2Classifier(**res_opt1.best_params,
                          solver="L-BFGS-B")
start = time()
clf1.fit(X_train, y_train)
print(f"Elapsed: {time()-start}")
print(f"Test set accuracy: {clf1.score(X_test, y_test)}")


clf2 = ns.Ridge2Classifier(**res_opt2.best_params,
                          solver="L-BFGS-B-lstsq")
start = time()
clf2.fit(X_train, y_train)
print(f"Elapsed: {time()-start}")
print(f"Test set accuracy: {clf2.score(X_test, y_test)}")

clf3 = ns.Ridge2Classifier(**res_opt3.best_params,
                          solver="L-BFGS-B")
start = time()
clf3.fit(X_train, y_train)
print(f"Elapsed: {time()-start}")
print(f"Test set accuracy: {clf3.score(X_test, y_test)}")


clf4 = ns.Ridge2Classifier(**res_opt4.best_params,
                          solver="L-BFGS-B-lstsq")
start = time()
clf4.fit(X_train, y_train)
print(f"Elapsed: {time()-start}")
print(f"Test set accuracy: {clf4.score(X_test, y_test)}")
Elapsed: 1.5195319652557373
Test set accuracy: 0.9736842105263158
Elapsed: 1.8859667778015137
Test set accuracy: 0.9736842105263158
Elapsed: 0.5796549320220947
Test set accuracy: 0.9736842105263158
Elapsed: 0.6930491924285889
Test set accuracy: 0.9736842105263158
# confusion matrix
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from sklearn.metrics import confusion_matrix

y_pred = clf2.predict(X_test)
cm = confusion_matrix(y_test, y_pred)

fig, ax = plt.subplots(figsize=(10, 8))
ax = sns.heatmap(cm, annot=True, cmap='Blues', fmt='g', xticklabels=np.arange(0, 2), yticklabels=np.arange(0, 2))
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix')
plt.show()

To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - Python .

Want to share your content on python-bloggers? click here.
Exit mobile version