A Machine Learning workflow using Techtonique
This article was first published on T. Moudiki's Webpage - Python , and kindly contributed to python-bloggers. (You can report issue about the content on this page here)
Want to share your content on python-bloggers? click here.
Want to share your content on python-bloggers? click here.
Contents
- 0 – Import packages that will be used in the demo
- 1 – Data-wrangling (using the
querier
) - 2 – Modeling/Hyperparameter tuning (using
mlsauce
andGPopt
) - 3 – Explain model’s decisions (using
the-teller
)
0 – Import packages
!pip install querier # A query language for Python Data Frames (part of Techtonique)
!pip install mlsauce # Miscellaneous Statistical/Machine Learning stuff (part of Techtonique)
!pip install GPopt # Bayesian optimization using Gaussian Process Regression (part of Techtonique)
!pip install the-teller # Model-agnostic Statistical/Machine Learning explainability (part of Techtonique)
! pip install scikit-learn
!pip install SQLAlchemy
!pip install matplotlib==3.1.3 # this version is required
import numpy as np import matplotlib.pyplot as plt import sqlite3 import pandas as pd import sqlalchemy import matplotlib.pyplot as plt import matplotlib.style as style from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split, cross_val_score, RepeatedKFold from sklearn.metrics import classification_report, confusion_matrix from time import time import querier as qr import GPopt as gp import mlsauce as ms import teller as tr
1 – Data-wrangling (using the querier
)
Remark: Some querier
verbs were tested on macOS and Linux so far (experimental).
breast_cancer = load_breast_cancer(as_frame=True)
print(breast_cancer.DESCR)
.. _breast_cancer_dataset: Breast cancer wisconsin (diagnostic) dataset -------------------------------------------- **Data Set Characteristics:** :Number of Instances: 569 :Number of Attributes: 30 numeric, predictive attributes and the class :Attribute Information: - radius (mean of distances from center to points on the perimeter) - texture (standard deviation of gray-scale values) - perimeter - area - smoothness (local variation in radius lengths) - compactness (perimeter^2 / area - 1.0) - concavity (severity of concave portions of the contour) - concave points (number of concave portions of the contour) - symmetry - fractal dimension ("coastline approximation" - 1) The mean, standard error, and "worst" or largest (mean of the three worst/largest values) of these features were computed for each image, resulting in 30 features. For instance, field 0 is Mean Radius, field 10 is Radius SE, field 20 is Worst Radius. - class: - WDBC-Malignant - WDBC-Benign :Summary Statistics: ===================================== ====== ====== Min Max ===================================== ====== ====== radius (mean): 6.981 28.11 texture (mean): 9.71 39.28 perimeter (mean): 43.79 188.5 area (mean): 143.5 2501.0 smoothness (mean): 0.053 0.163 compactness (mean): 0.019 0.345 concavity (mean): 0.0 0.427 concave points (mean): 0.0 0.201 symmetry (mean): 0.106 0.304 fractal dimension (mean): 0.05 0.097 radius (standard error): 0.112 2.873 texture (standard error): 0.36 4.885 perimeter (standard error): 0.757 21.98 area (standard error): 6.802 542.2 smoothness (standard error): 0.002 0.031 compactness (standard error): 0.002 0.135 concavity (standard error): 0.0 0.396 concave points (standard error): 0.0 0.053 symmetry (standard error): 0.008 0.079 fractal dimension (standard error): 0.001 0.03 radius (worst): 7.93 36.04 texture (worst): 12.02 49.54 perimeter (worst): 50.41 251.2 area (worst): 185.2 4254.0 smoothness (worst): 0.071 0.223 compactness (worst): 0.027 1.058 concavity (worst): 0.0 1.252 concave points (worst): 0.0 0.291 symmetry (worst): 0.156 0.664 fractal dimension (worst): 0.055 0.208 ===================================== ====== ====== :Missing Attribute Values: None :Class Distribution: 212 - Malignant, 357 - Benign :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian :Donor: Nick Street :Date: November, 1995 This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets. https://goo.gl/U2Uwz2 Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei present in the image. Separating plane described above was obtained using Multisurface Method-Tree (MSM-T) [K. P. Bennett, "Decision Tree Construction Via Linear Programming." Proceedings of the 4th Midwest Artificial Intelligence and Cognitive Science Society, pp. 97-101, 1992], a classification method which uses linear programming to construct a decision tree. Relevant features were selected using an exhaustive search in the space of 1-4 features and 1-3 separating planes. The actual linear program used to obtain the separating plane in the 3-dimensional space is that described in: [K. P. Bennett and O. L. Mangasarian: "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets", Optimization Methods and Software 1, 1992, 23-34]. This database is also available through the UW CS ftp server: ftp ftp.cs.wisc.edu cd math-prog/cpo-dataset/machine-learn/WDBC/ .. topic:: References - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993. - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995. - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.
Create a data frame breast_cancer_df
with columns that can be used by the querier
:
breast_cancer_df = breast_cancer.frame
breast_cancer_df_columns = breast_cancer_df.columns
breast_cancer_df.columns = ["_".join(elt.split()) for elt in breast_cancer_df_columns]
Querying the data frame with the querier
:
Selecting
qr.select(breast_cancer_df, "mean_radius, mean_texture, mean_perimeter, mean_area, target", limit=4, random=True)
Filtering
qr.filtr(breast_cancer_df, "(target == 1) & (mean_radius >= 10)")
Summarizing
breast_cancer_df['target'] = breast_cancer_df['target'].astype(object)
qrobj = qr.Querier(df=breast_cancer_df) request_1 = qrobj.select("mean_radius,\ mean_concave_points,\ target")\ .summarize("avg(mean_radius),\ avg(mean_concave_points),\ target", group_by = "target") print(request_1.get_df())
avg_mean_radius avg_mean_concave_points target 0 17.462830 0.087990 0 1 12.146524 0.025717 1
2 – Modeling/Hyperparameter tuning (using mlsauce
and GPopt
)
X = breast_cancer.data y = breast_cancer.target # split data into training test and test set X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, test_size=0.2, random_state=123)
Chosen model is LSBoost.
Hyperparameters tuning:
def lsboost_cv(X_train, y_train, n_estimators=100, learning_rate=0.1, n_hidden_features=5, reg_lambda=0.1, row_sample=0.9, col_sample=0.9, dropout=0, tolerance=1e-4, seed=123): estimator = ms.LSBoostClassifier(n_estimators=n_estimators, activation="relu", learning_rate=learning_rate, n_hidden_features=n_hidden_features, reg_lambda=reg_lambda, row_sample=row_sample, col_sample=col_sample, dropout=dropout, tolerance=tolerance, seed=seed, verbose=0) cv = RepeatedKFold(n_splits=5, n_repeats=3, random_state=123) return -cross_val_score(estimator, X_train, y_train, scoring='accuracy', cv=cv, n_jobs=4).mean()
def optimize_lsboost(X_train, y_train): def crossval_objective(x): return lsboost_cv( X_train=X_train, y_train=y_train, n_estimators=int(x[0]), learning_rate=10**x[1], n_hidden_features=int(x[2]), reg_lambda=10**x[3], col_sample=x[4], row_sample=x[5], dropout=x[6], tolerance=10**x[7]) gp_opt = gp.GPOpt(objective_func=crossval_objective, lower_bound = np.array([ 50, -6, 2, -2, 0.5, 0.5, 0, -6]), upper_bound = np.array([1000, -1, 250, 5, 1, 1, 0.7, -1]), n_init=10, n_iter=90, seed=123) return {'parameters': gp_opt.optimize(verbose=2), 'opt_object': gp_opt}
res_optimize_lsboost = optimize_lsboost(X_train, y_train)
best_parameters = res_optimize_lsboost['parameters'][0]
start = time() estimator_breast_cancer = ms.LSBoostClassifier(n_estimators=int(best_parameters[0]), learning_rate=10**best_parameters[1], n_hidden_features=int(best_parameters[2]), reg_lambda=10**best_parameters[3], col_sample=best_parameters[4], row_sample=best_parameters[5], dropout=best_parameters[6], tolerance=10**best_parameters[7], seed=123, verbose=0).fit(X_train, y_train) print(f"\n\n Test set accuracy: {estimator_breast_cancer.score(X_test, y_test)}") print(f"\n Elapsed: {time() - start}")
Test set accuracy: 0.9824561403508771 Elapsed: 3.462388038635254
y_pred = estimator_breast_cancer.predict(X_test)
print(classification_report(y_test, y_pred))
precision recall f1-score support 0 1.00 0.95 0.98 42 1 0.97 1.00 0.99 72 accuracy 0.98 114 macro avg 0.99 0.98 0.98 114 weighted avg 0.98 0.98 0.98 114
print(confusion_matrix(y_test, y_pred))
[[40 2] [ 0 72]]
3 – Explain model’s decisions (using the-teller
)
# creating the explainer for class = 1 (probability of being a malignant tumor) expr = tr.Explainer(obj=estimator_breast_cancer, y_class=1, normalize=False)
# adjusting the explainer to the test set expr.fit(X_test.values, y_test.values, X_names=list(breast_cancer.feature_names))
Calculating the effects... 30/30 [██████████████████████████████] - 3s 86ms/step Explainer(obj=LSBoostClassifier(col_sample=0.7372283935546875, dropout=0.13883361816406248, learning_rate=0.023178311069471363, n_estimators=385, n_hidden_features=40, reg_lambda=1151.7834917887246, row_sample=0.7634735107421875, tolerance=2.2258898141256302e-05, verbose=0), y_class=1)
# summary of results for the model (must use matplotlib=3.1.3) expr.plot(what="average_effects")
# Heterogeneity of effects (must use matplotlib=3.1.3) expr.plot(what="hetero_effects")
# summary of results for the model print(expr.summary())
Heterogeneity of marginal effects: mean std median min max fractal dimension error 1.082723 0.266851 0.868091 0.819966 1.456801 mean fractal dimension 0.652445 0.087281 0.586653 0.556320 0.782740 compactness error 0.310099 0.035665 0.283370 0.269509 0.360864 concavity error 0.097867 0.023285 0.079271 0.071594 0.129780 symmetry error 0.047409 0.058531 -0.000141 -0.031695 0.128003 mean compactness 0.021578 0.007013 0.016079 0.011121 0.032218 texture error 0.001695 0.000844 0.001001 0.000533 0.002907 worst area -0.000008 0.000001 -0.000009 -0.000010 -0.000006 mean area -0.000012 0.000002 -0.000013 -0.000014 -0.000009 area error -0.000015 0.000016 -0.000027 -0.000032 0.000007 worst perimeter -0.000197 0.000016 -0.000206 -0.000222 -0.000162 mean perimeter -0.000231 0.000019 -0.000243 -0.000261 -0.000191 worst texture -0.001210 0.000034 -0.001216 -0.001327 -0.001085 mean texture -0.001278 0.000052 -0.001297 -0.001438 -0.001125 perimeter error -0.001409 0.000302 -0.001624 -0.001784 -0.000937 worst radius -0.001675 0.000083 -0.001717 -0.001825 -0.001448 mean radius -0.001735 0.000126 -0.001813 -0.001941 -0.001450 worst compactness -0.010538 0.001996 -0.011886 -0.014363 -0.006346 radius error -0.018356 0.002165 -0.019816 -0.021018 -0.014330 worst concavity -0.035444 0.001509 -0.036161 -0.038979 -0.031021 mean smoothness -0.071665 0.011880 -0.078204 -0.105191 -0.033539 mean concavity -0.073131 0.004785 -0.075833 -0.081392 -0.061772 mean symmetry -0.111694 0.005669 -0.113490 -0.131086 -0.092818 worst symmetry -0.140455 0.002756 -0.140564 -0.150495 -0.129108 worst concave points -0.149019 0.003037 -0.149390 -0.158989 -0.135773 worst fractal dimension -0.177296 0.018744 -0.188971 -0.212246 -0.141802 mean concave points -0.208505 0.004745 -0.208881 -0.222427 -0.188558 worst smoothness -0.321451 0.006868 -0.321642 -0.345280 -0.295260 smoothness error -0.645636 0.181327 -0.781757 -0.871939 -0.381126 concave points error -0.766840 0.024979 -0.772391 -0.845261 -0.674872
The notebook (so that you can reproduce the workflow) can be found here.
To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - Python .
Want to share your content on python-bloggers? click here.