This article was first published on
T. Moudiki's Webpage - Python , and kindly contributed to python-bloggers. (You can report issue about the content on this page here)
Want to share your content on python-bloggers? click here.
Want to share your content on python-bloggers? click here.
This post is about Ridge2Classifier
, a classifier that I presented 5 years ago in this document. It’s now possible to choose starting values of the (likelihood) optimization algorithm which are solutions from least squares regression. Not always better,
but can be seen as a new hyperparameter. Also, Ridge2Classifier
used to fail miserably on digits data sets but now, with nnetsauce
’s maturity, Ridge2Classifier
is doing much better on this type of data, as demonstrated below.
0 – Install and load packages
!pip install nnetsauce
!pip install GPopt
import GPopt as gp import nnetsauce as ns import numpy as np from sklearn.datasets import load_digits from sklearn.model_selection import cross_val_score, train_test_split from sklearn import metrics from time import time
1 – Cross-validation and hyperparameter tuning
def ridge2_cv(X_train, y_train, lambda1 = 0.1, lambda2 = 0.1, n_hidden_features=5, n_clusters=5, dropout = 0.8, solver="L-BFGS-B"): # 'solver' is the optimization algorithm estimator = ns.Ridge2Classifier(lambda1 = lambda1, lambda2 = lambda2, n_hidden_features=n_hidden_features, n_clusters=n_clusters, dropout = dropout, solver=solver) return -cross_val_score(estimator, X_train, y_train, scoring='accuracy', cv=5, n_jobs=None, verbose=0).mean() def optimize_ridge2(X_train, y_train, solver="L-BFGS-B"): # objective function for hyperparams tuning def crossval_objective(x): return ridge2_cv(X_train=X_train, y_train=y_train, lambda1 = 10**x[0], lambda2 = 10**x[1], n_hidden_features=int(x[2]), n_clusters=int(x[3]), dropout = x[4], solver = solver) gp_opt = gp.GPOpt(objective_func=crossval_objective, lower_bound = np.array([ -10, -10, 3, 2, 0.6]), upper_bound = np.array([ 10, 10, 100, 5, 1]), params_names=["lambda1", "lambda2", "n_hidden_features", "n_clusters", "dropout"], n_init=10, n_iter=90, seed=3137) return gp_opt.optimize(verbose=2, abs_tol=1e-3)
dataset = load_digits() X = dataset.data y = dataset.target # split data into training test and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=3137) # hyperparams tuning res_opt1 = optimize_ridge2(X_train, y_train, solver="L-BFGS-B") print(res_opt1) # hyperparams tuning with different starting values for the optimization algorithm res_opt2 = optimize_ridge2(X_train, y_train, solver="L-BFGS-B-lstsq") print(res_opt2)
res_opt1.best_params["lambda1"] = 10**(res_opt1.best_params["lambda1"]) res_opt1.best_params["lambda2"] = 10**(res_opt1.best_params["lambda2"]) res_opt1.best_params["n_hidden_features"] = int(res_opt1.best_params["n_hidden_features"]) res_opt1.best_params["n_clusters"] = int(res_opt1.best_params["n_clusters"]) print(res_opt1.best_params) res_opt2.best_params["lambda1"] = 10**(res_opt2.best_params["lambda1"]) res_opt2.best_params["lambda2"] = 10**(res_opt2.best_params["lambda2"]) res_opt2.best_params["n_hidden_features"] = int(res_opt2.best_params["n_hidden_features"]) res_opt2.best_params["n_clusters"] = int(res_opt2.best_params["n_clusters"]) print(res_opt2.best_params)
{'lambda1': 5.243297406977503e-10, 'lambda2': 1.2433817601870388e-05, 'n_hidden_features': 14, 'n_clusters': 2, 'dropout': 0.94100341796875} {'lambda1': 1.747558169384434e-08, 'lambda2': 1360.0188315151736, 'n_hidden_features': 14, 'n_clusters': 2, 'dropout': 0.7794189453125}
2 – Out-of-sample scores
from time import time clf1 = ns.Ridge2Classifier(**res_opt1.best_params, solver="L-BFGS-B") start = time() clf1.fit(X_train, y_train) print(f"Elapsed: {time()-start}") print(clf1.score(X_test, y_test)) clf2 = ns.Ridge2Classifier(**res_opt2.best_params, solver="L-BFGS-B-lstsq") start = time() clf2.fit(X_train, y_train) print(f"Elapsed: {time()-start}") print(clf2.score(X_test, y_test))
Elapsed: 2.6086528301239014 0.9138888888888889 Elapsed: 1.2307183742523193 0.9416666666666667
# confusion matrix import matplotlib.pyplot as plt import seaborn as sns from sklearn.metrics import confusion_matrix y_pred = clf2.predict(X_test) cm = confusion_matrix(y_test, y_pred) fig, ax = plt.subplots(figsize=(10, 8)) ax = sns.heatmap(cm, annot=True, cmap='Blues', fmt='g', xticklabels=np.arange(0, 10), yticklabels=np.arange(0, 10)) ax.set_xlabel('Predicted labels') ax.set_ylabel('True labels') ax.set_title('Confusion Matrix') plt.show()
To leave a comment for the author, please follow the link and comment on their blog: T. Moudiki's Webpage - Python .
Want to share your content on python-bloggers? click here.